Refinement of Barium Dititanate

By Ekkehart Tillmanns
Institut für Mineralogie der Ruhr-Universität, D-463 Bochum, Postfach 2148, Germany (BRD)

(Received 12 August 1974; accepted 14 August 1974)

Abstract

BaTi}_{2} \mathrm{O}_{5}\), monoclinic, $A 2 / m, a=9.409$ (3), $b=3.932$ (1), $c=16.907$ (5) $\AA, \beta=103^{\circ} 5$ (2)', $Z=6$, $D_{x}=5.12 \mathrm{~g} \mathrm{~cm}^{-3}$. Crystals were prepared by rapidly cooling a melt of composition $\mathrm{BaO}: \mathrm{TiO}_{2}=30: 70$ mol. \%. Edge-sharing titanium coordination octahedra form infinite zigzag chains parallel to \mathbf{b}. The structure can also be described as an almost closepacked array of barium and oxygen atoms with titanium atoms in octahedral voids. The direction of packing is approximately [$\overline{1} 3 \overline{1}$] and the stacking sequence is $A B C A B C A B C . \mathrm{TiO}_{6}$ octahedra show appreciable distortions similar to those observed in PbTiO_{3}.

Introduction. A crystal with dimensions approximately $0.07 \times 0.04 \times 0.2 \mathrm{~mm}$ was used to measure the cell parameters and intensities. The cell constants were refined by a least-squares fit to the angular settings of 12 reflexions with $25^{\circ} \leq \theta \leq 30^{\circ}$ (Mo $K \alpha_{1}, \lambda=0.70926 \AA$). The systematic absences are $h k l$ for $k+l$ odd. The intensities of 6691 reflexions with $\theta \leq 38^{\circ}$ were collected on an automatic four-circle diffractometer with Zr filtered Mo $K \alpha$ radiation, $\theta-2 \theta$ step-scan mode with 60 steps of 0.01° and 2 s counting time per step. The background was measured for 10 s at each end of the scanning interval. After correction for absorption [$\mu(\mathrm{Mo} K \alpha)=136.9 \mathrm{~cm}^{-1}$, transmission factors between 0.33 and 0.62] reduction and averaging of the intensities resulted in 1843 unique structure factors, 431 of which were considered to be of zero intensity ($I<2 \sigma_{I}$). The structure was refined by full-matrix least-squares calculations starting from the atomic coordinates given
by Harrison (1956). Scattering factors were taken from International Tables for X-ray Crystallography (1962); the observed structure factors were weighted according to $w=1 / \sigma^{2}(F)$. Other experimental procedures and the computer programs used are the same as given by Tillmanns \& Gebert (1973).

The final weighted residual $R_{2}=\left(\sum w(\Delta F)^{2} / \sum w \cdot F_{o}^{2}\right)^{1 / 2}$ was 0.031 , the corresponding unweighted R_{1} was 0.026 for observed reflexions only and 0.072 including the 431 unobserved reflexions with $F_{o}=0$. The resulting positional and thermal parameters are given in Table 1.*

Discussion. The structural principle of barium dititanate has already been determined by Harrison (1956) from two-dimensional photographic data. The proposed structure was essentially correct although the spread in Ti-O distances was large and there was some uncertainty about the position of $O(4)$ because of diffraction ripples around the Ba atoms. Fig. 1 shows a projection of the structure along \mathbf{b}. Edge-sharing TiO_{6} octahedra form planar groups of three octahedra each, which are linked by common corners to other groups in the plane (010). In the direction of \mathbf{b}, infinite zigzag chains are formed via common octahedral edges.

The two independent Ba atoms in the asymmetric unit have a cuboctahedral 12-coordination with mean $\mathrm{Ba}-\mathrm{O}$ distances of 2.929 and $2.884 \AA$ respectively ($c f$.

[^0]Table 1. Fractional atomic coordinates and vibrational parameters $\left(\AA^{2}\right)$ with the significant figures of the estimated standard deviations in parentheses
All atoms are situated on the mirror plane at $y=0$. The definition of the Debye-Waller temperature factor is $\exp \left[-\frac{1}{4}\left(h^{2} a^{* 2} B_{11}\right.\right.$ $\left.\left.+k^{2} b^{* 2} B_{22}+l^{2} c^{* 2} B_{33}+2 h l a^{*} c^{*} B_{13}\right)\right]$.

	x / a	z / c	B_{11}	B_{22}	B_{33}	B_{13}
$\mathrm{Ba}(1)$	$0 \cdot 48223$ (3)	$0 \cdot 13107$ (2)	$0 \cdot 70$ (1)	$0 \cdot 49$ (1)	$0 \cdot 62$ (1)	$0 \cdot 18$ (1)
$\mathrm{Ba}(2)$	0.0	0.0	$0 \cdot 54$ (1)	$0 \cdot 43$ (1)	$0 \cdot 67$ (1)	$0 \cdot 09$ (1)
$\mathrm{Ti}(1)$	$0 \cdot 19441$ (10)	0.66610 (6)	$0 \cdot 32$ (3)	$0 \cdot 17$ (3)	$0 \cdot 14$ (3)	$0 \cdot 13$ (3)
Ti(2)	$0 \cdot 12731$ (10)	$0 \cdot 29292$ (6)	$0 \cdot 22$ (3)	$0 \cdot 20$ (3)	$0 \cdot 11$ (3)	-0.01 (3)
Ti(3)	$0 \cdot 28946$ (11)	$0 \cdot 46098$ (7)	$0 \cdot 34$ (3)	2.07 (6)	$0 \cdot 10$ (3)	$0 \cdot 11$ (2)
$\mathrm{O}(1)$	$0 \cdot 1625$ (4)	$0 \cdot 1749$ (3)	$0 \cdot 8$ (2)	0.8 (2)	$0 \cdot 5$ (1)	$0 \cdot 3$ (2)
O(2)	$0 \cdot 1015$ (4)	0.7651 (3)	$0 \cdot 1$ (1)	$0 \cdot 6$ (1)	$0 \cdot 2$ (1)	$0 \cdot 0$ (1)
$\mathrm{O}(3)$	$0 \cdot 2902$ (4)	0.9646 (3)	$0 \cdot 8$ (1)	$0 \cdot 4$ (1)	0.7 (1)	$0 \cdot 2$ (1)
$\mathrm{O}(4)$	$0 \cdot 3154$ (4)	$0 \cdot 3472$ (3)	$0 \cdot 5$ (1)	0.4 (1)	$0 \cdot 3$ (1)	$0 \cdot 2$ (1)
$\mathrm{O}(5)$	$0 \cdot 5$	$0 \cdot 5$	0.0 (2)	$0 \cdot 9$ (2)	0.6 (2)	-0.2 (2)
O(6)	$0 \cdot 2107$ (4)	$0 \cdot 5576$ (2)	$0 \cdot 8$ (1)	$0 \cdot 9$ (2)	$0 \cdot 3$ (1)	$0 \cdot 3$ (1)
O(7)	$0 \cdot 0710$ (4)	0.3911 (3)	$0 \cdot 5$ (1)	0.7 (2)	$0 \cdot 2$ (1)	$0 \cdot 1$ (1)
$\mathrm{O}(8)$	$0 \cdot 3780$ (4)	0.7113 (3)	$0 \cdot 5$ (1)	$0 \cdot 7$ (2)	0.6 (1)	0.0 (1)

Table 2). All O atoms are also cuboctahedrally surrounded by 12 other O or Ba atoms and like most other barium titanates the structure of $\mathrm{BaTi}_{2} \mathrm{O}_{5}$ is based on a nearly close-packed array of Ba and O atoms with 9 layers stacked along [$\overline{1} 3 \overline{1}]$ in the sequence $A B C A B C A B C$.

One interesting feature of the crystal structure is that $\mathrm{O}(8)$ is coordinated by only one Ti and three Ba atoms, thus receiving a bond strength sum (Pauling, 1960) of only $1 \cdot 17$ valence units. This extreme undersaturation of $\mathrm{O}(8)$ seems to be compensated by a pronounced distortion of the coordination octahedron around $\mathrm{Ti}(1) . \mathrm{Ti}(1)$ is displaced from the centre of the octahedron towards $\mathrm{O}(8)$; the resulting $\mathrm{Ti}(1)-\mathrm{O}(8)$ distance is $1.724 \AA$. Four Ti-O distances are in the range $1.875-2.056 \AA$, the sixth $[\mathrm{Ti}(1)-\mathrm{O}(7)]$ is considerably longer, $2 \cdot 466 \AA$. While the short $\mathrm{Ti}(1)-\mathrm{O}(8)$ distance could be interpreted with the extended electrostatic valence rule (Pauling, 1960; Baur, 1970), there is only poor agreement between other observed Ti-O distances and the distances calculated according to Baur's (1970) rule 3. O(7) for example is coordinated by three Ti and two Ba atoms and receives a bondstrength sum $p(\mathrm{O})=2.33 \mathrm{v} . \mathrm{u}$., which would correspond to calculated Ti-O distances of $2.01,1.96$ and $2.05 \AA$

Fig. 1. Projection of the structure along [010]. All atoms are located in the mirror planes at $y=0.5$ (solid lines) and $y=0$ (broken lines).
for $\mathrm{O}(7)-\mathrm{Ti}(1), \mathrm{O}(7)-\mathrm{Ti}(2)$ and $\mathrm{O}(7)-\mathrm{Ti}(3)$ respectively (Baur, 1970, rule 3). The observed distances, however, are $2 \cdot 466,1 \cdot 853$ and $2 \cdot 126 \AA$ respectively. The bondstrength sums calculated from the interatomic distances with Brown \& Shannon's (1973) empirical bond-strength-bond-length curves deviate appreciably from the atomic valences; both Ba atoms for example are overbonded by 25%.

A computer simulation of the crystal structure with the distance least-squares method (Meier \& Villiger, 1969) where the prescribed interatomic distances were calculated with Baur's (1970) rule 3 and their weights were based on the electrostatic strengths of these bonds (Baur, 1972), showed that such an electrostatic model

Table 2. Interatomic distances and angles
Standard deviations are approximately $0.004 \AA$ for $\mathrm{Ba}-\mathrm{O}$ and $\mathrm{Ti}-\mathrm{O}$ distances, 0.002 for $\mathrm{Ti}-\mathrm{Ti}$ and 0.006 for $\mathrm{O}-\mathrm{O}$ distances. Bond angles have a standard deviation of $0 \cdot 2^{\circ}$.

Central Atom:	$\mathrm{Ba}(1)$		$O(1)--0(7)$	35.6°	2.889%
$\mathrm{Ba}(1)-\mathrm{O}(8)$		2.692 月	Central Atom:	T1(3)	
$\bigcirc(8)$		2.695 (2x)			
$\bigcirc(4)$		2.704 (2x)	Ti (3) -o (6)		1.940 \%
-O(3)		2.962	-O(5)		1.941
-O(3)		2.980	-0(3)		1.967 (2x)
-0(5)		2.995 (2x)	-O(4)		1.993
-0(6)		3.240 (2x)	-0(7)		2.126
-O(1)		3.257	$0(6)-0(5)$	$105.6{ }^{\circ}$	3.091
			$0(6)--0(3)$	88.4	2.725 (2x)
Central Atom:	$\mathrm{Ba}(2)$		$0(6)-0(4)$	165.0	3.900
			$0(6)-0(7)$	37.9	2.824
$\mathrm{Ba}(2)-\mathrm{O}(6)$		2.805 (4x)	$0(5)--0(3)$	89.6	2.754 (2x)
-0(7)		2.874 (4x)	$0(5)--0(4)$	89.4	2.768
-0(3)		2.924 (2x)	$0(5)--0(7)$	166.6	4.040
-O(1)		3.006 (2x)	$0(3)-0(3)$	176.5	3.932
			$0(3)-0(4)$	91.7	2.842 (2x)
Central Atom:	Ti(1)		$0(3)-0(7)$	90.8	2.916 (2x)
			$0(4)-0(7)$	77.2	2.571
Ti(1) $-0(3)$		1.724			
-o(6)		1.375	Central Atom:	O(1)	
-O(1)		1.999 (2x)			
-O(2)		2.056	$\mathrm{Ti}(1)-\mathrm{Ti}(1)$	159.0	3.932
-0(7)		2.466	$\mathrm{Ti}(1)-\mathrm{Ti}(2)$	97.4	3.078 (2x)
$0(8)-0(6)$	37.9°	2.716			
$0(8)-0$ (1)	36.8	2.731 (2x)	Central Atom:	O(2)	
$0(8)-0(2)$	102.0	2.944			
0 (3) $-0(7)$	176.9	4.138	Ti(2)-Ti(2)	152.7	3.932
$O(6)--0(1)$	36.3	2.900 (2x)	$\mathrm{Ti}(2)-\mathrm{Ti}(1)$	93.0	3.078 (2x)
$0(6)-0(2)$	160.1	3.372	$\mathrm{Ti}(2)-\mathrm{Ti}(2)$	93.3	3.134 (2x)
$0(6)-0(7)$	85.2	2.970	$\mathrm{Ti}(1)-\mathrm{Ti}(2)$	101.2	3.255
$0(1)-0(1)$	159.0	3.932			
$0(1)--0(2)$	80.3	2.630 (2x)	Central Atom:	O(3)	
$0(1)-0(7)$	82.7	2.971 (2x)			
$0(2)-0(7)$	74.9	2.769	$\mathrm{Ti}(3)-\mathrm{Ti}(3)$	176.5	3.932
Central Atom:	Ti(2)		Central Atom:	O(4)	
$\mathrm{Ti}(2)-\mathrm{O}(4)$		1.799	$\mathrm{Ti}(2)-\mathrm{Ti}(3)$	99.9	2.905
-0(7)		1.853			
-0(2)		2.023 (2x)	Central Atom:	O(5)	
-0(1)		2.096			
-0(2)		2.154	$\mathrm{Ti}(3)-\mathrm{Ti}(3)$	180.0	3.882
$0(4)-0(7)$	39.5	2.571			
$0(4)-0(2)$	79.8	2.929 (2x)	Central Atom:	0(6)	
$O(4)--0(1)$	97.8	2.942			
$0(4)-0(2)$	176.5	3.952	$\mathrm{Ti}(1)-\mathrm{Ti}(3)$	162.7	3.712
$0(7)-2(2)$	99.5	2.960 (2x)			
$0(7)-0(1)$	172.7	3.941	Central Atom:	O(7)	
$0(7)-0(2)$	87.1	2.769			
$0(2)-0(2)$	152.7	3.932	$\mathrm{Ti}(2)-\mathrm{Ti}(3)$	93.5	2.905
$O(2)--0(1)$	79.3	2.630 (2x)	$\mathrm{Ti}(2)-\mathrm{Ti}(1)$	96.8	3.255
$0(2)-0$ (2)	80.7	2.708 (2x)	$\mathrm{Ti}(3)-\mathrm{Ti}(1)$	169.7	4.574

could easily be constructed without a change of the unit-cell parameters.
It therefore seems that the distortions of the TiO_{6} octahedra in $\mathrm{BaTi}_{2} \mathrm{O}_{5}$ are not caused by the bondstrength distribution and cannot be interpreted on electrostatic grounds only. Baur (1961) pointed out that the Ti coordination in PbTiO_{3} (Shirane, Pepinsky \& Frazer, 1956) with Ti-O distances of $1.78,4 \times 1.98$ and $2 \cdot 38 \AA$ should be described as a $5+1$ coordination and a similar distortion of a TiO_{6} octahedron in $\mathrm{Na}_{2} \mathrm{Ti}_{3} \mathrm{O}_{7}$ has been interpreted by Andersson \& Wadsley (1961) as a tendency of Ti towards 5 coordination. Table 3 gives distances between Ti atoms and their six nearest O neighbours for a number of compounds

Table 3. Distances between titanium atoms and their six nearest oxygen neighbours for a number of compounds with different Ti coordinations

Compound	Bond lengths (\AA)
$\mathrm{Y}_{2} \mathrm{TiO}_{5}{ }^{\text {a }}$	$\text { Ti-O: } \underset{3.89}{1 \cdot 78}, 1 \cdot 87,1 \cdot 91,2 \times 1 \cdot 94$
Fresnoite	Ti-O: $1 \cdot 63,4 \times 2 \cdot 00,3.58$
$\mathrm{Ba}_{2} \mathrm{TiOSi}_{2} \mathrm{O}_{7}{ }^{\text {b }}$	
Innelite	$\begin{array}{cccc} \mathrm{Ti}(1)-\mathrm{O}: & 1.62, & 1.99, \\ 2.06,3.67 \end{array}$
$\mathrm{Na}_{2} \mathrm{Ba}_{3}(\mathrm{Ca}, \mathrm{Na})(\mathrm{Ba}, \mathrm{K}, \mathrm{Mn})$	$\begin{array}{r} \mathrm{Ti}(2)-\mathrm{O}: \begin{array}{c} 1 \cdot 90,1 \cdot 92,2 \cdot 00,2 \cdot 04, \\ 2 \cdot 09,2 \cdot 16 \end{array} \end{array}$
$\mathrm{Ti}_{3} \mathrm{O}_{4}\left(\mathrm{SO}_{4}\right)_{2}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right)_{2}{ }^{\text {c }}$	$\begin{array}{r} \mathrm{Ti}(3)-\mathrm{O}: 1 \cdot 71,1 \cdot 93,1 \cdot 96,1 \cdot 98 \\ 2 \cdot 01,3 \cdot 17 \end{array}$
$\mathrm{BaTi} \mathrm{F}_{2}{ }_{5}{ }^{\text {d }}$	$\mathrm{Ti}(1)-\mathrm{O}: \begin{gathered} 1.71, \\ 2.06,2.47 \end{gathered}$
$\mathrm{PbTiO}_{3}{ }^{\text {e }}$	Ti-O: $1 \cdot 78,4 \times 1 \cdot 98,2.38$
$\mathrm{Na}_{2} \mathrm{Ti}_{3} \mathrm{O}_{7}{ }^{\text {f }}$	$\mathrm{Ti}(2)-\mathrm{O}: \underset{2 \times 1.94,2.34}{ }=$

References: (a) Mumme \& Wadsley (1968); (b) Moore \& Louisnathan (1969); (c) Chernov et al. (1971); (d) This work; (e) Shirane et al. (1956); (f) Andersson \& Wadsley (1961).
with Ti in different coordinations. It can be seen that there is no sharp limit between 5 and 6 -coordinated Ti. While Ti is clearly 5 -coordinated in $\mathrm{Y}_{2} \mathrm{TiO}_{5}$, fresnoite, and partly in innelite, other Ti atoms in innelite, in $\mathrm{BaTi}_{2} \mathrm{O}_{5}, \mathrm{PbTiO}_{3}$ and $\mathrm{Na}_{2} \mathrm{Ti}_{3} \mathrm{O}_{7}$ have a $5+1$ coordination.

I thank Professors W. H. Baur and I. D. Brown for valuable discussions, and the Computing Centre of the Ruhr-Universität Bochum for computing time.

References

Andersson, S. \& Wadsley, A. D. (1961). Acta Cryst. 14, 1245-1249.
Baur, W. H. (1961). Acta Cryst. 14, 214-216.
Baur, W. H. (1970). Trans. Amer. Cryst. Assoc. 6, 129-155.
Baur, W. H. (1972). Amer. Min. 57, 709-731.
Brown, I. D. \& Shannon, R. D. (1973). Acta Cryst. A 29, 266-282.
Chernov, A. N., Ilyukhin, V. V., Maksimov, B. A. \& Belov, N. V. (1971). Kristallografiya, 16, 87-92.
Harrison, F. W. (1956). Acta Cryst. 9, 495-500.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Meier, W. M. \& Villiger, H. (1969). Z. Kristallogr. 129, 411-423.
Moore, P. B. \& Louisnathan, S. J. (1969). Z. Kristallogr. 130, 438-448.
Mumme, W. G. \& Wadsley, A. D. (1968). Acta Cryst. B24, 1327-1333.
Pauling, L. (1960). The Nature of the Chemical Bond. 3rd ed. Ithaca: Cornell Univ. Press.
Shirane, G., Pepinsky, R. \& Frazer, B. C. (1956). Acta Cryst. 9, 131-140.
Tillmanns, E. \& Gebert, W. (1973). Acta Cryst. B29, 2789-2794.

Acta Cryst. (1974). B30, 2896

1,6:8,13-Cyclopropanediylidene[14]annulene

By Angelo Mugnoli and Massimo Simonetta
Istituto di Chimica Fisica dell'Università e Centro C.N.R., Via Golgi 19, 20133 Milano, Italy

(Received 5 August 1974; accepted 8 August 1974)

Abstract

C}_{17} \mathrm{H}_{12}\), monoclinic, $C 2 / c, Z=8, a=19 \cdot 485$ (3), $b=6.812$ (2), $c=17.881$ (5) $\AA, \beta=108.52$ (2) ${ }^{\circ}, D_{m}=$ $1 \cdot 273, D_{x}=1 \cdot 277 \mathrm{~g} \mathrm{~cm}^{-3}$, m.p. $169-170^{\circ} \mathrm{C}$. Mo $K \alpha$ diffractometer data. Final $R=0.054$ on all observed amplitudes. The strain imposed by the bridges of the annulene perimeter and by the cyclopropane ring seem to have a balancing rather than a synergic effect; as a result the annulene ring is nearly planar with bond lengths close to the aromatic value.

Introduction. X-ray diffraction data were measured with Mo $K \alpha$ radiation on a Syntex $P \bar{\top}$ four-circle diffractom-

eter equipped with graphite monochromator. Cell dimensions were obtained from 26 reflexions (plus their equivalents) for $\lambda=0.71069 \AA$. Systematic absences were $h k l$ for $h+k$ odd, $h 0 l$ for l odd. A crystal of dimensions $0.30 \times 0.35 \times 0.40 \mathrm{~mm}$ was used. Intensities were collected to a maximum 2θ value of 55° ($\theta-2 \theta$ scan mode, scan width $2 \cdot 1^{\circ}+\alpha_{1} \alpha_{2}$ separation, variable scan speed between 1 and $12^{\circ} \mathrm{min}^{-1}$, dead time for coincidence correction $2.1 \times 10^{-6} \mathrm{~s}$). The background was counted for half the total scanning time on each side of the reflexion. Three check reflexions were monitored periodically to test crystal

[^0]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30616 (9 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH11NZ, England.

